PRL 107, 256801 (2011)

PHYSICAL REVIEW LETTERS

week ending
16 DECEMBER 2011

Two-Dimensional Topological Insulator State and Topological
Phase Transition in Bilayer Graphene

Zhenhua Qiao,"* Wang-Kong Tse,"" Hua Jiamg,z’1 Yugui Yao,>! and Qian Niu'?
lDepartment of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
’International Center for Quantum Materials, Peking University, Beijing 100871, China

3School of Physics, Beijing Institute of Technology, Beijing 100081, China
(Received 6 September 2011; published 14 December 2011)

We show that gated bilayer graphene hosts a strong topological insulator (TI) phase in the presence of

Rashba spin-orbit (SO) coupling. We find that gated bilayer graphene under preserved time-reversal
symmetry is a quantum valley Hall insulator for small Rashba SO coupling Ag, and transitions to a strong
TI when Ag > 4/U? + 13, where U and 1, are, respectively, the interlayer potential and tunneling energy.
Different from a conventional quantum spin Hall state, the edge modes of our strong TI phase exhibit both
spin and valley filtering, and thus share the properties of both quantum spin Hall and quantum valley Hall
insulators. The strong TI phase remains robust in the presence of weak graphene intrinsic SO coupling.

DOI: 10.1103/PhysRevLett.107.256801

Recently, there has been a surge of interest in time-
reversal invariant topological insulators (TIs) [1], a new
quantum phase of matter that carries an odd number of
helical edge (two-dimensional TIs) or surface (three-
dimensional TIs) states. Two-dimensional TI, commonly
known as quantum spin Hall (QSH) insulator, occurs in
strongly spin-orbit coupled material and was predicted in
single-layer graphene with intrinsic spin-orbit (SO) cou-
pling [2] and in HgTe/CdTe quantum well at large well
thicknesses [3]. The latter has been confirmed in experi-
ment [4]; graphene, however, has a weak intrinsic SO
coupling [5], making it difficult to observe a QSH state.
To remedy the situation, a number of recent theoretical
[6-10] and experimental [11] work have demonstrated that
surface doping on graphene with heavy atoms can dramati-
cally boost the SO coupling strength. Moreover, the broken
out-of-plane mirror symmetry creates strong Rashba SO
coupling [11], which can induce an interesting quantum
anomalous Hall state [7,8] in the presence of proximity
magnetic exchange interaction.

In this Letter, we present a theory of topological phases
in gated bilayer graphene in the presence of Rashba SO
coupling tp under preserved time-reversal symmetry. From
arguments of band structure and Z, topological invariant,
we show that this gated bilayer system exhibits two topo-
logically distinct phases, from a quantum valley Hall state
at weak fy to a strong topological insulator state at strong
tg. In a zigzag-edged bilayer system, the strong TI phase
has the properties of both quantum valley Hall and quan-
tum spin Hall states. At a fixed fz, topological phase
transition between the two states can be achieved by gate
tuning. We also show that the strong TI phase remains
robust if weak intrinsic SO coupling is present in addition
to the Rashba effect.

The tight-binding Hamiltonian for the AB-stacked bi-
layer graphene [12] in the presence of Rashba SO coupling
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and interlayer potential difference (due to an applied gate
voltage) is [8,13]
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where the single-layer Hamiltonian HSTL% for the top (T)
and bottom (B) graphene layers including Rashba SO
coupling [2,14] is

Hg g = _tzcjacja + itg Z (Sap X dij)zc;racjﬁ: (2)
(ij)a (ipap

here c:ra is the usual creation operator for electron with spin
a = *1 on site i and ¢ is the intralayer tunneling energy
between nearest neighbor sites. The second term on the
right-hand side is the Rashba SO interaction with coupling
strength 75, s are the Pauli matrices for the spin degrees of
freedom, and d;; is the lattice vector pointing from site j to
site i. Interlayer tunneling between the two layers is given
by the third term in Eq. (1) with a tunneling energy ¢,
whereas interlayer potential difference 2U is given by the
last two terms.

We first analyze the bulk band structure obtained from
the above Hamiltonian. Figures 1(a)-1(d) shows the evo-
lution of the bulk band structure with increasing strength of
Rashba SO coupling at fixed interlayer potential differ-
ence. In bilayer graphene, a bulk band gap can be opened
(panel a) by applying an external gate voltage across the
layers [15] to break the inversion symmetry in the out-of-
plane direction. When the Fermi level lies within the bulk
gap, gated bilayer graphene is a quantum valley Hall
(QVH) insulator [8,16], characterized by a quantized val-
ley Chern number C,,, which is defined as the difference
between the Chern numbers at the two valleys K and K.
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FIG. 1 (color online).
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Evolution of band structure of gated bilayer graphene at a fixed interlayer bias U/r = 0.1 for increasing

Rashba SO coupling 7/t = 0, 0.04, 0.0582, 0.08. t; is assumed to be the same on both layers for concreteness. First row
[Figs. (a)—~(d)]: bulk system with periodic boundary conditions; second row [panels e)—(h)]: finite strip with zigzag edges; third row
[panels (i)—(1)]: finite strip with armchair edges. In the second row, the dark (blue) and light (green) curves inside the bulk gap are used to
represent edge states located at opposite boundaries. k, is normalized to inverse lattice constant 1/a and the valleys are indicated as K, K'.

When the Rashba SO coupling 7 is turned on, we find that
the bulk gap decreases gradually with t; [Fig. 1(b)] and
vanishes completely (Fig. 1(c)). Since turning on the
Rashba coupling from zero is not accompanied by any
band gap closing, it can be inferred that the system remains
a QVH insulator at finite ¢z and U, before the bulk gap
vanishes in Fig. 1(c). We find that the bulk gap reopens
[Fig. 1(d)] when 5 is further increased, and in the vicinity
of gap closing the conduction and valance bands cross each
other linearly as a function of t; characteristic of a band
inversion. This suggests a topological phase transition,
and in the following we show that is indeed so with the
emergent phase a two-dimensional strong topological in-
sulator that, interestingly, also possesses the properties of a
QVH insulator in the sense that the Z, invariant [17] is 1
and the valley Chern number C,, is also 1.

The Z, invariant [17] characterizes the band topology
in the presence of time-reversal symmetry and is defined by

7, =i[ f dk - A (k) — / dszZ(k)]mod(Z), 3)
2L JonBz HBZ
where A(k) = iy, (u,(k)|V,u,(k)) is the Berry connection
summed over all filled band indices n with the periodic
part of the Bloch function denoted by |u,(k)), Q. (k) =
(Vi X A), is the z component of the Berry curvature. By
virtue of Kramer’s theorem |u,(k)) satisfies the time-
reversal invariant constraint |u,(—k)) = O|u,(k)), where
0 is the time-reversal operator. Therefore, we only need to

calculate the line and surface integrals in Eq. (3) over half of
the Brillouin zone (as denoted by “HBZ” in the equation)
that satisfies the time-reversal constraint. We have com-
puted Z, numerically from the Hamiltonian Eq. (1) using
the method described in Ref. [18]. Figure 2 shows our
calculated Z, phase diagram as a function of U and ¢,
where we find that the regimes before and after gap closing
are characterized by topologically distinct phases. The
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FIG. 2 (color online). Phase diagram of the Z, invariant as a
function of U and t at fixed interlayer tunneling ¢, /¢ = 0.1429.
The color scale represents the magnitude of the bulk gap in units
of t. The dotted line plots the phase boundary condition Eq. (5)
between the quantum valley Hall insulator (QVHI) and strong TI
phases. The bulk gap decreases but remains finite at U # 0 as tp
increases to large values [dark (blue) region below the light
(green) region] in the strong TI phase.
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system before gap closing is in a QVH phase with a topo-
logically trivial Z, = 0 invariant. After gap closing and
reopening, we find that Z, = 1, therefore proving that the
gated bilayer graphene system is a strong TIL.

At the topological phase transition critical point, the gap
closing condition allows us to obtain an analytic expression
of the phase transition boundary from a low-energy
Hamiltonian. Expanding the tight-binding Hamiltonian
Eq. (1) in the vicinity of K, K’ gives the following eight-
band low-energy Hamiltonian

t
H = v(no.k, + o,k,)1 1, + EL(O'XTX —o,7y)1
AR
+ 7(77axsy —oys)l, + Ul L7, 4)

where 7 = =1 labels the valley K, K’ degrees of freedom,
o, s and 7 are Pauli matrices representing the A-B sub-
lattice, spin, and layer degrees of freedom, respectively; 1
is the identity matrix, the Fermi velocity and Rashba
coupling are given, respectively, by v = 3ta/2 and A, =
3tz. The low-energy Hamiltonian at k = 0 gives the energy
eigenvalues € = =U and six other eigenenergies that sat-
isfy the relationship & — pU(e® + a®> — 1] — U?) —
(a* + 4 + U?)e = 0 where u = *1. Imposing the gap
closing condition € = 0 we find the topological phase
transition boundary

=02+ 1. (5)

In Fig. 2 we plot Eq. (5) on the Z, phase diagram, from
which we see that the analytic expression (dotted line)
describes accurately the phase transition boundary be-
tween the two phases obtained from our numerical Z,
calculations.

Graphene sheets have two principal edge terminations
along and perpendicular to the bond-length direction, re-
spectively, known as armchair and zigzag terminations
[19]. The valleys K, K’ remain good quantum numbers in
zigzag-edged strips but are mixed (and hence no longer
good quantum numbers) in armchair-edged strips. We first
examine the edge band structure in a bilayer graphene strip
with zigzag edges along one direction and periodic bound-
ary condition along the other direction. Figure 1(e) shows
the QVH phase at finite U and 7z = 0 characterized by a
pair of spin-degenerate gapless edge bands. We find that
the two valleys are characterized by opposite Chern num-
bers * 1, therefore the valley Chern number C,, = 2. With a
finite Rashba SO coupling (panel f), the spin degeneracy is
lifted yielding two separate pairs of gapless edge bands,
and the bilayer system remains a QVH insulator with the
same valley Chern number C,, = 2. It can be seen that the
outer pair of edge bands (e.g., at valley K, lines labeled A,
B) connect the conduction band with the valance band at
the same valley, whereas the inner pair of edge bands (e.g.,
C, D at valley K) connect the two conduction bands or the
two valence bands at different valleys. When the bulk gap

is closed (panel g), the two pairs of edge bands at each
valley merge together with the bulk bands (the upward and
downward dips at K and K’); when the bulk gap reopens
(Fig. 1(h)) at a larger fg, only one pair of nondegenerate
edge states emerges. This change from an even to an odd
number of edge states signals a phase transition from a
topologically trivial to a topologically nontrivial phase,
consistent with our Z, calculation. Remarkably, we find
that the valley Chern number remains quantized, but
changes to C,, = 1. This implies that the strong TI phase
is also a QVH insulator and enjoys the same valley
protection.

This is illustrated in Fig. 3 showing the edge modes of
the QVH and strong TI phases before and after bulk gap
closing. At small 7z, the QVH phase [Fig. 3(a)] has two
pairs of counterpropagating edge states on each edge that
are valley-filtered with different valley quantum numbers
K and K'. At large 1y after gap reopening the strong TI
phase carries only a single pair of counterpropagating edge
states. Although the z projections of spins are not good
quantum numbers, these counterpropagating edge chan-
nels still carry helically opposite spins that are rotated
from s, due to Rashba SO coupling. In the conventional
QSH phase [2], the counterpropagating edge states con-
stitutes a Kramer’s pair that are spin-filtered. A novel
feature in our strong TI phase is that because of valley
quantum number conservation, the pair of counterpropa-
gating edge states are both spin-filtered and valley-filtered
[Fig. 3(b)], consistent with our bulk topological invariant
results Z, = 1 and C,, = 1. As a consequence, the strong
TI phase is topologically protected both by time-reversal
symmetry against weak nonmagnetic disorder, and by
valley-inversion symmetry against weak magnetic disorder
that is long-range (longer than lattice spacings) so that
intervalley scattering remains prohibited.

For armchair edge geometry, because valleys K and
K’ overlap and are not good quantum numbers, there is
no QVH phase. At finite U and small 7, before phase
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FIG. 3 (color online). Schematic of edge state propagation in
the zigzag edge geometry for (a) QVHI phase at small tg;
(b) strong TI state at large 7. The arrows on the edge channels
represent in-plane spin directions (out-of-plane spin component
is zero). Labels A-H and M-Q correspond to band labels in
Figs. 1(f) and 1(h).
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FIG. 4 (color online). Phase diagram as a function of Rashba
tg and intrinsic #;go SO coupling strengths (taken to be same on
both layers) at finite U/t = 0.3. The color scale indicates the
magnitude of the bulk gap in units of ¢. The white region
corresponds to a metallic phase where there is no global gap
in the bulk band structure.

transition, the system is an ordinary insulator and does not
have any gapless edge state [Figs. 1(i) and 1(j)]. When the
bulk gap closes and reopens (Figs. 1(k) and 1(1)), a single
pair of gapless edge states emerges that are not valley-
filtered but remain spin-filtered, as expected from a strong
TI phase. Unlike the zigzag case however, the armchair
case has no valley protection and thus carries a strong TI
phase akin to the conventional QSH state.

The predicted TT state in this Letter relies on the pres-
ence of a strong Rashba SO coupling, which can be
achieved in principle through doping with adatoms
[7-9,11]. This however also enhances the intrinsic SO
coupling, and therefore leads to a natural question whether
or not the TI state will be destroyed by the presence of
intrinsic SO coupling. We address this question by includ-
ing the intrinsic SO coupling term [20] in each layer of the
Hamiltonian Eq. (1). Figure 4 shows the phase diagram we
obtained as functions of both Rashba SO and intrinsic SO
coupling strengths at a fixed interlayer potential. First, for
small tz, we find that the QVH phase remains intact when
the intrinsic SO coupling f15q is also small. As 15 in each
layer is increased, the individual-layer quantum spin Hall
state due to intrinsic SO coupling prevails, leading to a
phase transition to a weak TI phase [21] which is analogous
to a layered QSH system. Despite each layer behaves as a
QSH state, an even number of such layers renders the
overall system topologically trivial that is characterized
by a vanishing Z, and an even number of gapless edge
states. For large values of 7, we identify a region in the
phase diagram where the strong TI phase remains robust.
This occurs when the intrinsic SO coupling is about an
order of magnitude weaker than the Rashba SO coupling.
Indeed, at small values of t;5o the phase diagram remains
qualitatively similar to Fig. 2 at f;5o = 0, with the only

difference that the gapless metallic regime (white region in
Fig. 4) between the QVH and strong TI phases becomes
more extended.

In conclusion, we have shown that gated bilayer gra-
phene hosts a strong topological insulator phase at large
Rashba spin-orbit coupling. The gate voltage can serve as a
topological switch that tunes between the quantum valley
Hall phase and the strong topological insulator phase. This
can be realized by enhancing the spin-orbit coupling in
graphene through adatom doping.
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